ISSN 1662-4009 (online)

ey0018.5-6 | Advances in clinical practice | ESPEYB18

5.6. Vitamin D supplements for prevention of tuberculosis infection and disease

Ganmaa Davaasambuu , Uyanga Buyanjargal , Zhou Xin , Gantsetseg Garmaa , Delgerekh Baigali , Enkhmaa Davaasambuu , Khulan Dorjnamjil , Ariunzaya Saranjav , Sumiya Erdenebaatar , Bolortuya Batbileg , Yanjmaa Jutmaan , Enkhtsetseg Tserenkhuu , Munkhzaya Ankhbat , Tunsag Murneren , Khudyakov Polyna , Seddon James A , Marais Ben J , Batbayar Ochirbat , Erdenetuya Ganbaatar , Amarsaikhan Bazarsaikhan , Spiegelman Donna , Tsolmo Jadambaa , Martineau Adrian R

N Engl J Med 2020; 383:359–368 DOI: 10.1056/NEJMoa1915176 Abstract: https://pubmed.ncbi.nlm.nih.gov/32706534/In brief: Vitamin D metabolites support innate immune responses to Mycobacterium tuberculosis. In this phase 3, randomized, controlled trial of vitamin D supplementation to prevent tuberculosis infection, there was no reduction of risk of tuberculosis infection, tubercu...

ey0018.5-7 | Advances in clinical practice | ESPEYB18

5.7. Effect of vitamin D3 supplementation on severe asthma exacerbations in children with asthma and low vitamin D levels: the VDKA randomized clinical trial

Forno Erick , Bacharier Leonard B , Phipatanakul Wanda , Guilbert Theresa W , Cabana Michael D , Ross Kristie , Covar Ronina , Gern James E , Rosser Franziska J , Blatter Joshua , Durrani Sandy , Han Yueh-Ying , Wisniewski Stephen R , Celedon Juan C

JAMA. 2020 Aug 25;324(8):752–760. doi: 10.1001/jama.2020.12384. Abstract: https://pubmed.ncbi.nlm.nih.gov/32840597/In brief: Several observational studies have linked low serum 25(OH)D levels to severe asthma exacerbations, lower lung function, and reduced response to corticosteroids. In this randomized controlled trial...

ey0018.5-8 | Translational highlights | ESPEYB18

5.8. Hormonal regulation of biomineralization

Arnold Andrew , Dennison Elaine , Kovacs Christopher S , Mannstadt Michael , Rizzoli Rene , Brandi Maria Luisa , Clarke Bart , Thakker Rajesh V

Nat Rev Endocrinol. 2021 May;17(5):261–275 Abstract: https://pubmed.ncbi.nlm.nih.gov/33727709/In brief: This article systematically reviews the current advances in the understanding of mineral metabolism with focus on the regulation of mineralization in skeletal tissue and inhibition of mineralization in non-skeletal tissue. This is mandatory reading for any aspiring endocrino...

ey0018.5-9 | Translational highlights | ESPEYB18

5.9. Articular cartilage regeneration by activated skeletal stem cells

Murphy Matthew P , Koepke Lauren S , Lopez Michael T , Tong Xinming , Ambrosi Thomas H , Gulati Gunsagar S , Marecic Owen , Wang Yuting , Ransom Ryan C , Hoover Malachia Y , Steininger Holly , Zhao Liming , Walkiewicz Marcin P , Quarto Natalina , Levi Benjamin , Wan Derrick C , Weissman Irving L , Goodman Stuart B , Yang Fan , Longaker Michael T , Chan Charles K F

Nat Med. 2020 Oct;26(10):1583–1592 Abstract: https://pubmed.ncbi.nlm.nih.gov/32807933/In brief: Improved treatments for osteoarthritis and other degenerative joint diseases are urgently needed. This study demonstrates, for the first time, that the synovial microenvironment can be modified to allow resident skeletal stem cells to form hyaline articular cartilage and thereby reg...

ey0018.5-10 | Translational highlights | ESPEYB18

5.10. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis

Wu Chia-Lung , Dicks Amanda , Steward Nancy , Tang Ruhang , Katz Dakota B , Choi Yun-Rak , Guilak Farshid

Nat Commun. 2021 Jan 13;12(1):362 Abstract: https://pubmed.ncbi.nlm.nih.gov/33441552/In brief: Heterogenous differentiation patterns and low yields limit the use of human induced pluripotent stem cells (hiPSCs) for the generation of cartilage. In the present work, bulk- and single cell RNA sequencing during chondrogenic differentiation were used to identify regulatory networks resp...

ey0018.5-11 | Translational highlights | ESPEYB18

5.11. Crtap and p3h1 knock out zebrafish support defective collagen chaperoning as the cause of their osteogenesis imperfecta phenotype

Tonelli F , Cotti S , Leoni L , Besio R , Gioia R , Marchese L , Giorgetti S , Villani S , Gistelinck C , Wagener R , Kobbe B , Fiedler I A K , Larionova D , Busse B , Eyre D , Rossi A , Witten P E , Forlino A

Matrix Biol. 2020 Aug;90:40–60 Abstract: https://pubmed.ncbi.nlm.nih.gov/32173581/In brief: Mutations in 3-hydroxylation complex genes CRTAP and P3H1 cause osteogenesis imperfecta type VII and VIII, respectively. However, the pathogenic mechanism by which these mutations cause disease remains unclear. This study points to a defective chaperone role of the 3-h...

ey0018.5-12 | Advances in skeletal biology | ESPEYB18

5.12. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption

McDonald Michelle M , Khoo Weng Hua , Ng Pei Ying , Xiao Ya , Zamerli Jad , Thatcher Peter , Kyaw Wunna , Pathmanandavel Karrnan , Grootveld Abigail K , Moran Imogen , Butt Danyal , Nguyen Akira , Corr Alexander , Warren Sean , Biro Mate , Butterfield Natalie C , Guilfoyle Siobhan E , Komla-Ebri Davide , Dack Michael R G , Dewhurst Hannah F , Logan John G , Li Yongxiao , Mohanty Sindhu T , Byrne Niall , Terry Rachael L , Simic Marija K , Chai Ryan , Quinn Julian M W , Youlten Scott E , Pettitt Jessica A , Abi-Hanna David , Jain Rohit , Weninger Wolfgang , Lundberg Mischa , Sun Shuting , Ebetino Frank H , Timpson Paul , Lee Woei Ming , Baldock Paul A , Rogers Michael J , Brink Robert , Williams Graham R , Bassett J H Duncan , Kemp John P , Pavlos Nathan J , Croucher Peter I , Phan Tri Giang

Cell. 2021 Mar 4;184(5):1330–1347.e13 Abstract: https://pubmed.ncbi.nlm.nih.gov/33636130/In brief: This paper reports an alternative cell fate for multinucleated, bone-resorbing osteoclasts and shows that they may undergo fission into smaller osteomorphs. The findings challenge the current dogma that osteoclasts primarily differentiate from hematopoietic progenitor cells and a...

ey0018.5-13 | Advances in skeletal biology | ESPEYB18

5.13. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation

A Haseeb , KC Ranjan , M Angelozzij , C de Charleroy , D Rux , RJ Tower , L Yao , R Pellegrino da Silva , M Pacifici , L Qin , V Lefebvre

Proc Natl Acad Sci USA 2021 Feb 23;118(8):e2019152118. Abstract: https://pubmed.ncbi.nlm.nih.gov/33597301/In brief: Sox9 is the key transcription factor and master regulator of chondrocyte differentiation during skeletal development. This paper demonstrates that SOX9 also has a key role during postnatal life to maintain open growth plates and healthy articular cartilage by preventi...

ey0018.5-14 | Advances in skeletal biology | ESPEYB18

5.14. Piezo1 inactivation in chondrocytes impairs trabecular bone formation

Hendrickx Gretl , Fischer Verena , Liedert Astrid , von Kroge Simon , Haffner-Luntzer Melanie , Brylka Laura , Pawlus Eva , Schweizer Michaela , Yorgan Timur , Baranowsky Anke , Rolvien Tim , Neven Mona , Schumacher Udo , Beech David J , Amling Michael , Ignatius Anita , Schinke Thorsten

J Bone Miner Res. 2021 Feb;36(2):369–384 Abstract: https://pubmed.ncbi.nlm.nih.gov/33180356/In brief: Chondrocyte-specific ablation of the mechano-sensory Piezo1 results in substantially impaired formation of secondary spongiosa during endochondral bone formation. The study explores this unexpected finding and show that mechano-sensing in growth plate chondrocytes directly reg...

ey0018.5-15 | Advances in skeletal biology | ESPEYB18

5.15. PTHrP targets salt-inducible kinases, HDAC4 and HDAC5, to repress chondrocyte hypertrophy in the growth plate

Nishimori Shigeki , Wein Marc N , Kronenberg Henry M

Bone. 2021 Jan;142:115709 Abstract: https://pubmed.ncbi.nlm.nih.gov/33148508/In brief: In the developing bone, PTHrP signaling inhibits hypertrophic differentiation, the key step in the coupling of chondrogenesis and osteogenesis during endochondral bone formation. The current paper reviews findings of previous knockout-studies on PTHrP-induced signaling including HDAC4/5, salt-ind...