ISSN 1662-4009 (online)

ey0021.13-18 | Identifying Health Disparities and Improving Access to Healthcare | ESPEYB21

13.18. Changing trends in the global, regional, and national burden of iodine deficiency among adolescents and young adults: population-based study

B Gong , C Wang , W Yang , Z Shan

Brief Summary: This prevalence study examined global, regional and national trends in iodine deficiency among adolescents and young adults, based on data from the Global Burden of Disease (GBD) 2019 database.Iodine deficiency is a significant public health concern as it can result in hypothyroidism, goiter, and alterations in growth and development. While universal salt iodination has had a significant impact, there is a need for better estimates of the ...

ey0020.8-10 | New Paradigms | ESPEYB20

8.10. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes

X Yuan , R Wang , B Han , C Sun , R Chen , H Wei , L Chen , H Du , G Li , Y Yang , X Chen , L Cui , Z Xu , J Fu , J Wu , W Gu , Z Chen , X Fang , H Yang , Z Su , J Wu , Q Li , M Zhang , Y Zhou , L Zhang , G Ji , F Luo

Brief summary: Using in-depth multi-omics analyses of human type 1 diabetes (T1D) samples, the authors profiled gut microbial functional and metabolic alterations. The T1D microbiota showed decreased butyrate production and bile acid metabolism and increased lipopolysaccharide (LPS) biosynthesis. Fecal microbiota transplantation in animal models proved that T1D gut microflora is a causative factor in the regulation of glucose metabolism.The etiology of T...

ey0020.8-12 | New Mechanisms | ESPEYB20

8.12. ZnT8 loss-of-function accelerates functional maturation of hESC-derived beta cells and resists metabolic stress in diabetes

Q Ma , Y Xiao , W Xu , M Wang , S Li , Z Yang , M Xu , T Zhang , ZN Zhang , R Hu , Q Su , F Yuan , T Xiao , X Wang , Q He , J Zhao , ZJ Chen , Z Sheng , M Chai , H Wang , W Shi , Q Deng , X Cheng , W Li

Brief summary: In this experimental study, genome editing and in vitro pancreatic differentiation of human pluripotent stem cells (SC) were used to generate ZNT8 loss-of-function (LOF) SC-β-cells. These cells showed accelerated functional maturation, increased insulin secretion and improved resistance to metabolic stress. Transplantation of ZnT8 LOF SC-β-cells into mice with preexisting diabetes significantly improved their glucose levels.<...